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NEW METHODS FOR NONLINEAR 
FILTERING (9 

R.S. Bucv (2), C. HECHT (3), K.D. SENNE (4) 

: r  

Resume. - Cei article concerne la rialisation de jltres non linkaires, utilisant un calculaieur 
numirique de la troisisme gknkraiion comme moyen de synthsse. 

On considsre en particulizr la synthsse et I’dvaluation par une mithode de Monte-Carlo 
d’un dimodulateur de phase optimal. Les performances du dimodulateur optimal sont comparies 
avec celles de la a boucle a verrouillage de phase )) classique et on monire qu’une amklioration 
de performance sur I’erreur de 2 a 3 db est obienue. Finalement on indique des mdthodespour 
la synihsse pratique dit $Itre optimal qui font actuellenieni I’obiet de recherches. 

I - INTRODUCTION 

One of the basic problems of experimental science consists of processing 
noisy observations (non linear functions of a subset of some underlying set 
of state variables, corrupted by measurement noise) to obtain estimates of 
all of the state variables. Usually the state variables are adequately modelled 
as solutions to a set of nonlinear stochastic differential equations, and the 
observation mechanism can presumably be modeled by an associated system 
of stochastic differential equations whereby the measurements are taken to be 
nonlinear functions of the states with additive noises. The nonlinear problem 
is of course a natural generalization of the linear filtering problem which 
has been completely resolved by the Kalman-Bucy filtering theory [7], [12]. 
Both filtering problems are concerned with finding a G best D estimate (Le., 
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an estimate minimizes the expected value of s o w  boss function of the estim- 
ation error), and, consequently, are resolved by cqmputini thd cohditbnal, 
density of the present states given the past anck-present &bervatio& ot the 
measurement process. The theorical description of the’evofution of the condi- 
tional densities is contained in the “ Representation theorem ” [12]; however 
a challenging numerical problem remains : construct a finite-dimensional 
algorithm which accepts as inputs the observations and produces as outputs the 
optimal estimates. The numerical problem, referred to as the “ realization pro- 
blem ”, is the subject of the present paper. 

This paper is a natural sequel to [7], in which both the linear and nonlinear 
filtering problems were reviewed and the results put in perspective. Some of 
the early work on the realization problem [15], [31] was mentioned at that 
time. In the three intervening years since the survey in [7] appeared, much 
work has been reported involving the realization problem [2], [3], [SI, [16], [22], 
[24], [35], [38], [41] and [43]. An up to date survey of the more recent research, 
including the present results has been included in the F.J. Seiler Laboratory 
report [lo] and part of the results of that report are reproduced in this paper 
in order that they may be exposed to a larger audience in a more formal way. 

Our research is described in this paper in relation to a specific application 
to a problem concerning the demodulation of a phase-modulated carrier 
corrupted by additive noise, where the phase process is taken as doubly- 
integrated white noise. It is necessary to  confine attention to a single class of 
applications for realization studies since unlike the linear counterpart there 
is no uniformly, best finite-dimensional realization for nonlinear filters. In 
general each application has features which must be exploited, for example, 
the natural domain for the phase demodulator states is a torus. 

Even for a specific application we are obliged to select among a variety of 
approximation techniques as a function of problem parameters ; for example, 
the signal to noise ratio is a critical variable in the current application. Natu- 
rally, we are concerned with developing generally applicable techniques, and 
we therefore emphasize the rationale for selecting the various approximation 
methods. 

The phase demodulation problem possesses three intriguing features : 
first it is technological extremely important (for a survey of the astounding 
number of attempts to extend the threshold of the classical phase-locked 
loop see the references in [31]); secondly, the state dimension of the signal 
process is only two, thereby making feasible Monte Carlo simulations on 
current serial third-generation digital computers ; and, finally the two-state 
model for the signal process is realistic. Generalization of methods to problems 
of higher signal state dimension is possible but costly in terms of computation 
time on current digital computers. In the final section of this paper we discuss 
some synthesis tools which we feel will be a more effective substitute for serial 
digital computers. 
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NEW METHODS FOR NON LINEAR FILTERING 5 

The research in this paper is an attempt to  use the theory of nonlinear filter- 
ing to design a real system. In the authors' opinion too often research in 
nonlinear filtering, can be classified into two categories : either it is solely 
concerned with theory or it consists of engineering h e s  to the extended 

useful, we believe our approach offers considerable fresh possibilities both 
for developing the theory and for designing practical systems. For without 
practical examples of nonlinear filters, the theory is likely to diverge from 
significant and useful questions, while engineering design techniques tend to 
degenerate to stale and unimaginative cut and try cookbook methods; in a 
word, practical examples develop insight. 

1 
I 

8 
Kalman-Bucy filters or moment filters. While both of these categories are 

II - OPTIMAL NONLINEAR PHASE DEMODULATION 

1. Introduction 

An interesting application for optimal nonlinear estimation was introduced 
by Mallinckrodt, Bucy, and Chang [31], who considered the problem of tracking 
a first-order phase process based on measurements of a modulated signal in 
noise of the form: 

dz (t) = A cos [00 t + XI (t)] dt + dv ( t )  

where A is a known amplitude, 00 is a known carrier frequency, and XI ( t )  
is the message process being tracked. The measurement noise is assumed 
white. Using a voltage-controlled oscillator the known carrier may be removed 
by heterodyning down to base band, producing both in-line and quadrature 
components and resulting in an equivalent two-dimensional measurement 
process of the form : 

where A has been taken as unity without loss of generality, and the noise has 
been replaced by a vector of mutually independent quantities. 

\ 

The first-order phase process studied in [31] consisted of Brownian motion 
with increment of length h having variance qh. In this paper we describe a 
study of a second order phase process involving the integral of Brownian 
motion, expressed as : 

. = [ O  0 0 '1 ["'] x2 dt + [:]dPt 
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6 R. S. BUCY, C. HECHT ET K. D. SENNE 

.c We will retain the same measurement model (1) and let the noises V I  and v 2  

be independent Brownian motions with path increments of length h having 
variance rh. 

The familiar technique for tracking such phase processes involves the 
application of the phase-locked loop, studied thoroughly by Viterbi [8]. The 
phase-locked loop is a very ingenious nonlinear estimator, capable of near- 
optimal performance in good signal/noise environments. The steady-state 
behavior of the loop is identical to that of the so-called “ linearized ” or 
“ extended ” Kalman-Bucy filter for nonlinear systems, however, as was 
illustrated in [31]. Thus, the phase-locked loop is an excellent example of a 
very successful extended Kalman-Bucy filter. In the following section we 
discuss the stationary behavior of the linearized filter and the consequences of 
time descretization of the problem. Then in the subsequent section we will 
recast the discrete-time solution in terms of optimal nonlinear estimation, 
thereby setting the stage for a description of the numerical experiments. 

’ 

2. The Linearized Kalman-Bucy Filter 

Equations for the standard, continuous, linearized Kalman-Bucy filter are 
reproduced in Table 1 for the above phase-estimation problem. The measure- 
ment function is linearized about the current estimate 21 (?) of the phase. The 
approximate filter attempts to track the mean of the conditional phase density, 
which, of course, is the minimum mean-squared error estimate. As a result, 
the loop estimate takes on all real values, whereas the original problem is 
only observable modulo 2 x.  Accordingly, it makes sense to consider the 
modulus of the error in the interval [- x ,  x ] ,  or equivalently to take E [(e + x )  
mod 2 x - xI2 as an error criterion. Naturally if the signal to noise ratio is 
high enough we would expect the minimum of the mean-modulo-2 x- squared 
to be essentially equivalent to mean-squared error, but for higher noise situa- 
tions, the modulation of the error would tend to  bound the maximum mean- 
modulo-2 x-squared error (since the worst case will be a uniform error density 
on [- x,  x] ) .  In Section C below we will discuss a nonlinear estimate designed 
to be defined only on [- x,  x ] .  

Table 1 
Summary of Continuous Linearized Kalman-Bucy Filter 

Phase Process Model 

dx = Fxdt + G dp, ~ ( o )  - N Lo, (011 
t 

F = [: i] , G = [ y ]  , E(pt  - = 1 qds. 
0 
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4 
Observation Model 

dz = W) dt + dY, E(yt - YO) (y t  - YO)' = 1 R ds, 
t 

0 

cos x1 
R = [;;I, h(&-) = [ s i n x l ] .  

Filter Model 

G = ( F - K H ) $ d t +  K ( d z - d t + H i )  

= Fzdt + K (dz - d l ) .  

P11 P11 

r r 

Pl2 Pl2 

r r 

sin 21 - cos 21 

sin $1 - cos 21 

-- 

-- 
K = PHR-1 = 

P = FP -I- P F - P H R - ~  H P +  Q 

[ .  . ] ["12--  e 1  r P 2 2 - i ]  PI1 P12 

- - P11 P12 - - 
P I 2  P 2 2  P11 Pl2 PTZ 

P22 - ___ "7 r 

Equilibrium Solution 

Filter Time Constant 

(4) 

no Wvrier 1973 - J-1 



8 R. S. BUCY, C. HECHT ET K. D. SENNE 

In order to implement the nonlinear filter on a digital computer we will 
need to discretize time by some interval A. The selection of A will be made 
so as to assure essentially the same steady-state performance of the continuous 
and discrete phase-locked loops. 

Accordingly, we will now evaluate the steady-state solution of the matrix 
Ricatti-equation for the linearized filter, which we know is approximately 
equal to the error variance for low-noise applications. If we make the defini- 
tions : 

4 

then the linearized filter satisfies the equations 

where 
df = ( F  - K H )  idt  + K(dz - d t  + Hfdt) 

and 

where P satisfies 
K = P H  R-l,  

( 5 )  
d P  
dt -- = FP + P F  - PH' R-' HP + Q, 

with P(0) = E. This system is diagrammed in Figure 1. We may set the 
derivative in (5) to zero as a necessary condition for steady-state and alge- 
braically determine the possible steady-state solutions. Accordingly, we obtain 

=G[ 42 (;)1'4 1 ] 
42 ( y)"' 

(7) 

'14 

where T = d2 (5) , the filter time constant, is obtained by studying the df 

Revue Fraryaise d'Automatique, Informatique et de Recherche opirationnelle 



NEW METHODS FOR NON LINEAR FILTERING 9 

equation (4) with (6) substituted for P as follows : The homogeneous part 
b of (4) is rewritten as : 

G = ( F - K H ) S d t  

= (F- P H  R-l H) 2 

The eigenvalues of the matrix in (8) are the solutions 3, to 

resulting in A = :i ~ (!)''I (- 1 f i), or, using the definition for T in (7), 

1 
A = - (- 1 f i). (10) 

7 

Thus the solutions to (8) are of the form : 

so that T is indeed a time constant. From (4) and (8) we may write the steady- 
state differential equations for the extended Kalman-Bucy filter (Le., the phase- 
locked loop) as : 

or, equivalently, 
= FRdt + K(dz -d.2), (1 1) 

2 
dR1 = 2 2  dt + - (- sin 21 dzl + cos $1 dzz), 

7 

and 
2 
- (- sin 21 dzl + COS 21 d.22). 
72 

d i z  

Refer to Table 1 for a summary of above results. The corresponding results 
for the discrete-time filter, obtained by Hecht [24], are summarized in Table 2. 
If we are interested in simulating a filter which behaves substantially the same 
as the continuous filter then we must choose the sampling interval carefully so 
that it is as large as possible subject to the constraint that the discrete cova- 
riance in steady-state is within an acceptable tolerance of the continuous 
covariance. 
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10 1. S. BUCY, C. HECHT ET K. D. SENNE 

I-------- 1 

MESSAGE MODEL I I.----- 

I t  

FILTER MODEL 1 L - -- - - - - - _I 

Figure 1 
Block Diagram of Linearized Phase Estimation 

Table 2 
Summary of Discrete Linearized Kalman-Bucy Filter 

Phase Process Model 

X(nA) = Q, [nA, (n - l)A] x [(n - l)A] + rg,(nA), 

1 A  

14 Q, 0 1  
Q, [nA, (n - l)A] = eFA z [ 

4 
E[u:(nA)] = qa = - A ,  nA = t 

nA 

(n-1)4 r = /  Q, [nA, p] G d p  z GA = 
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Equilibrium Solution 

rd [Sll(n) + 2 Slz(n)A] - S:2(n)A2 
S11(n) + r d  

Sll(n + 1 )  = + S22(n)2 

Si2(n) [ r d  - Siz(n)A] 
S11(n) + rd S12(n + 1) = + S22(n)A 

no Fkvrier 1973 - J-1 



12 R. S. BUCY, C. HECHT ET K. D. SENNE 

Setting S(n + 1) = S(n) = S, using, a discrete form of the Bass-Roth 
Theorem [l], 

with 

P 2  m = - + 4 p  2 

The steady-state discrete prediction covariance Sand the filtering covariance 
Pct must converge to the continuous P of (6) in the limit as A + 0. Accordingly, 
we write S as a function of P and AI7 as : 

Sl1 (:) = Pl1 (; - 1) , (13) 

SlZ (;) = P122/Q0. (14) 

s 2 2  (4) = Pzz [A (&-d.0) + 41 , 

p (g) = 4 (y. 

1 

(1 5)  

A 
where a0 is a function of - , since the p of Table 2 may be written : 

T 

(16) 

The filtering steady state Pct may be similarly expressed as : 

7 
Pd* ,  (e) = uo S l l ( 4 )  = PI1 (1 - uo), (1 7) 
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Pall (9)  = EO S l Z  (9)  = PlZ d.0, 

The relationship between A/. and the discrete variances is illustrated in figures 
2-4. If we choose A/. = 0.1 and evaluate (1  3) and (17), we find : 

Sll(O.1) 
P11 

___- - 1.108028, 

while 

= 0.9070263, Pdll(0.  1) 
P11 

or SH(O. 1) - Pall(O. 1) r 0.2 P11. Thus we suffer a 10 % change in the steady- 
state covariance by taking 10 samples per time constant. In any case we will 
compare all discrete filters to each other, and we can assume that results lie 
within 10 % of their continuous limits. 

W 
V z oa 

+ E  a 
W >  
t- 

I L 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
A/F =RATIO OF SAMPLING INTERVAL TO FILTER TIME CONSTANT 

Figure 2 
Discrete P11 Error Variance 

no Fevrier 1973 - J-I 
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Y 5- z 
LT 

25 
9 4 -  

k g  

W Y )  

v o  
oz3-  

0 2 -  
5 

I- 

V 

LT 
I 

a 

2 0’ 0.2 0.4 0.6 0.8 1.0 12 1.4 1.6 
I 1 , I I I I L 

A/F = RATIO OF SAMPLING INTERVAL TO TIME COPXISTANT 

a 
-N I I 1 
nN 0 . d.2 Of4 016 Oi8 1.b . 1.2 I. 4 1.6 

A/F = RATIO OF SAMPLING INTERVAL TO TIME CONSTANT‘-- 

Figure 3 
Disaete Paa Error Variance 

- 
1 
1.6 

Figure 4 
Discrete P12 Error Variance 
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3. Application of Nonlinear Filtering 

The application of Bayes-Law filtering, developed by Bucy and Senne [14], 
requires special considerations for each special case. In the problem of this 
paper, for example, the dimension of the driving noise is one less than that 
of the state vector, a situation for which Bucy and Senne indicate there results 
in a computational simplification for Bayes Law implementation. We will 
explore that claim here for the second order phase process. 

At the outset consider a similar but unrealistic phase process with two 
driving noises u1 and u2 so that (in discrete time) : 

x(n + 1) = W n )  + M n ) ,  (20) 
where 

and the remaining quantities, as well as the sensor model remain the same as 
described in Table 2. Now if we let the variance of uz and u1 be q/A and take 
the limit as E -+ 0 then the process (20) will be identical to the one described 
in Table 2. For any finite E, however, the probability density function of the 
driving terms r g  will take the form : 

where 

Similarly, the density of the observation noise will be denoted PUG),  which 
will be gaussian with covariance R. 

If we review the Bayes representation theorem solution to the discrete 
filtering problem [12], we can determine that : 

(22) 
1 

Pp( - @ x ) J n  I n(g)dxldx2, 
-m 

and 

no FBvrier 1973 - J-1 



16 R. S. BUCY, C. HECHT ET K.  D. SENNE 

Now if we take the limit as E + 0 in (22) we obtain 

where C = (2 x)-'/z(qA)-l/g. In other words the Bayes integral reduces to an 
integral over a subspace of the state space with dimension equal to that of the 
driving noise vector (equals one in this case). The complete Bayes recursion 
may now be written : 

[(ZI - cos y$ + (ZZ - sin ~4~1 J I Z , I Z - ~ ( y )  (26) i A 
Jnln(y) = CZ exp 

where both CI and Cz are normalizing constants. 

Although there can be no doubt that a significant simplification has resulted 
from reducing the number of integrations required for the Bayes integral 
computation, it must be pointed out that the arguments of JnIn in (25) must 
be determined to lie in a particular subspace of RZ. If the densities have been 
stored only at a finite number of points then some form of interpolation of the 
densities will be necessary, resulting in some overhead, so that the computation 
is not exactly equivalent to a scalar problem. 

Another problem of concern to this particular application is the domain 
of the conditional probability densities. If we are only interested in modulo-2 x 
errors for the reasons stated earlier then there is no loss of generality to map 
all modulo-2 x intervals of the conditional densities back into the [- x ,  x ]  
interval in the XI coordinate and sum up the individual contributions. Similarly, 
because we are computing the phase in discrete-time with sample time A, we 

observe that phase-rate contributions outside the interval [ - - 1, i] will have 

the same effect on the next phase as their modulo - - component. 
2 x  
A 

Accordingly, we may map the phase-rate xz components of the conditional 

densities back into [in, ~ a] for the same reason as above. The combination 

of the two mappings results in an equivalence between the " cyclic " state 
space and a torus (see fig. 5).  

Revue Francaise d'dutomatique, Informatique et de Recherche opirationnelle 



17 NEW METHODS FOR NON LINEAR FILTERING 

Next we consider what simplifications arise for the Bayes integral update 
(25)-(26) as a consequence of the cyclic mapping of the state space. We begin 
by combining (25) and (26) into a single equation representing the filter update, 
and absorb all non state-dependent terms of the quadratic exponent expansions 
expansions into a single normalizing constant CO, giving : 

where 

Figure 5 
Torus Interpretation of Doubly Cyclic State Space 

If we now modulate the density JnIn as described above, we obtain : 

- x  x 
with - x < c < x, and - < T < - . Finally we use the definition (29) on A A 
Jn+lln+l, and substitute (27), resulting in the following manipulations [9] : 

no Fkvrier 1973 - J-1 



18 R. S. BUCY, C. HECHT ET K. D. S E W  

let E = p-- A 

A Jn," ( a - E A  + 2 4 k - m )  

2 x m  ) dc 
E + ,  

(let i = I-m, j = I -  i )  
x 

(Fubini's theorem to interchange and J) 
\ 

where 

The result (31) represents the exact recurrence relation required for the 
cyclic conditional density. The individual terms of u (e )  will drop rapidly on 
either side of T - E, depending only on the variance qA. 

Having constructed a density function updating formula for the phase 
estimation problem, the question remains -what form shall the phase estimate 
itself take ? It is clear that the conditional mean (the goal of the phase-locked 
loop) is an admissible candidate. The cost criterion that is minimized by the 
conditional mean, however, is the mean squared error. It is not obvious that 
mean squared error is the best criterion for choosing estimates modulo 2 sc. 
In fact, a periodic cost function of the form : 

L(e) = 2 (1 - cos e) (33) 

Revue Francaise d'dutomatique, Informatique et de Recherche opkrationnelle 



NEW METHODS FOR NON LINEAR FILTERING 19 

might be more appropriate than e2 if only modulo-2 x-errors are important. 
The cyclic loss (33) looks like e2 for small e and (e - 2 kx)2 for e close to 
2 kx for all k. Moreover, we may easily show that the estimate x: which 
minimizes (1) : 

x 
x h  

E [L(x: - x:) I Z,] = L(T - x:) jn(q  5) do d7: (34) 
--x -2 

A 
is given by 

For a proof of (35) see [31]. 

Of course the cyclic loss may not be the only desirable loss function for 
the phase demodulator. But many other proposed criteria would be minimized 
by appropriate function of the conditional phase densities, resulting in extre- 
mely great flexibility for the experiment designer. Moreover, it is seen that the 
conditional expected loss (34) as well as the densities themselves are computable 
in addition to the estimates so that a considerable amount of quantitative 
information is available to provide a realistic assessment of the quality of the 
estimates, regardless of the cost criterion employed. No such information is 
provided by the phase-locked loop - especially after steady-state is attained. 

x: = tan-' { E [sin (x,) I Z,] /E [cos (x,) I Z,] } (35) 

Appendix A. Numerical Experiments With The Phase-Locked Loop 

In order to provide an accurate check on the value of the nonlinear filters, 
it was necessary to perform extensive Monte-Carlo tests on the phase-locked 
loop (Le. the steady-state linearized filter). Since the discrete phase-locked loop 
operates very fast (over 1,OOO estimates per second on the CDC 6600), it was 
possible to average estimates over 5000 sample paths of length 130 in 10 mn. 
If three time constants are discarded (30 samples) in each sample path the 
resulting 100 estimates represent steady-state. If all of the steady-state errors 
were averaged this would lead to 500,000 monte-Carlos of the steady-state 
error. On the other hand, since adjacent errors are correlated, the effective 
Monte-Carlo length would better be set between N = 50,000 (one estimate per 
time constant) and N = 500,000 (every estimate included). Thus, we may 
determine the three-standard deviation confidence bands based on both 
values of N. 

The independent parameters for the different phase-locked loop cases 
considered was pll, the steady-state continuous Ricatti equation solution for the 
phase error variance. pll = @ rS'r q1'4 is shown by Viterbi [42] to be the inverse 
of the effective signal to noise ratio, or N/S. The initial condition for the matrix 

(l) Z,  denotes the data up to and including time n, 
zdn), z&), zdn - 11, z2(n - l), ..., zdO), z2(0) 

no Fkvrier 1973 - J-1 



20 R. S. BUCY, C. HECHT ET K. D. SENNE 

Ricatti equation can be taken to be its steady-state value (I), and the mean- 
squared error will then only be a function of N / S  and not of q. A value of 
0.01 was chosen for q, and thus the value of I was taken to be (p11)‘/8/(2‘/3 q 1 / 3 ) .  

Now if the phase-locked loop were linear with H = [- 1 01, then p n  
would be the steady-state mean-squared error. An equivalent interpretation 
would be to consider p11 as the steady-state mean-squared error of a filter 
operating on the linear measurements z = H&- + y .  The latter interpretation 
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f 0.0873 
f 0.0863 
f 0.0792 
f 0.0735 
f 0.0689 
f 0.0649 
f 0.0626 
f 0.0601 
f 0.0587 
f 0.0576 
f 0.0549 
f 0.0537 

~~ 

Y = 500,000 

f 0.0264 
f 0.0270 
f 0.0276 
f 0.0327 
f 0.0383 
f 0.0384 
f 0.0380 
f 0.0366 
f 0.0345 

0.0309 
f 0.0297 
f 0.0278 
f 0.0275 
f 0.0252 
f 0.0234 
& 0.0219 
f 0.0206 
f 0.0199 
f 0.0191 
f 0.0187 
f 0.0183 
f 0.0174 
f 0.0171 

___-__ 

( 1 )  An alternative initial condition of p11(0) = 4 p11 was used in Appendix B, where it 
was discovered that there is a significant dependence between the initial condition and the 
effective time constant of the loop. Thus the time required to reach steady-state from the 
large initial condition is frequently too long for an effective Monte-Carlo analysis. 
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verifies that in all cases the mean-squared error of the actual loop can be no 
lower than p n .  If we are interested in modulo-2 x errors we may convert 
the lower bound into mean-modulo-2 x-squared error by the equation : 

0: = Im [(e + x )  mod 2 x - x]z exp 
--m 

- (e + 2 kx)z 
--x k = - m  2 pll 

where IS: 4 mean-modulo-2 ?G squared error. The result G: of (A-I) is plotted 
in fig. A-1 as well as the equivalent discrete filter result cdm2 (based on Pa,,). 
IS; was determined by the Newton integration based on 10,000 points in the 
interval [- x, x ]  and 15 standard deviations taken from the infinite sum. 

The deviation the Monte-Carlo performance of the phase-locked loop 
from the ideal (linear) analysis can also be seen in figure A-1 to be insignificant 
below N / S  = - 10 db or above + 8 db. The significant departure in the middle 
region is a result of the " cycle-slip " phenomena, whereby the unmodulated 
phase-error density begins to contain substantial probability in the secondary 
modes [8]. For extremely high noise situations, however, modulation of the 
error density causes the asymptotic error density to become uniform on 
[- x,  n], resulting in an asymptotic variance of x2/3 = 3.29 (or 5.19 dB) 
for N / S  large. 

The point a t  which the - 10 dB departure between the two curves occurs 
is often referred to as " threshold ", where unlock of the loop begins to cause 
problems. Almost all engineering modifications to the basic loop are designed 
for the purpose of extending the threshold. It is clear that all nonlinear filters 
must have modulo-2 x error variance in the region between the two curves 
(discrete phase-locked loop and discrete-ideal). Thus the problem of threshold 
extension is equivalent to reducing steady-state error variance, which attains 
the maximum potential improvement of about 4 dB at - 1.8 dB N/S .  

The confidence in the Monte-Carlos of the phase-locked loop can be 
computed using the results from [8]. Accordingly, we observed that a value 
for p 2  = pg/p; must be determined, since the three-standard deviation confi- 
dence bounds on variance depend on pz. Thus our Monte Carlo simulations 
involved the calculation of an estimate (i.4 of p4 and the estimate $2 of pz. 
Then we plotted the ratio @4/@ = $2 in figure A-2. From the figure we deter- 
mine that a good upper bound on pz is given by 5.4, which is achieved near 
- 5.0 dB N / S .  A summary of the estimate 3 Q confidence bands is given in 
Table A-I, where we observe that the maximum confidence band width is 
from f 0.038 dB to f 0.120 dB, depending on whether N was taken as 500,000 
(the actual number of errors averaged) or 50,000 (an approximation to the 
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0.6 

a4 

a2 

equivalent number of independent errors used). Thus, the Monte-Carlo 
experiment of the phase-locked loop is more than good enough for a reliable 
bench-mark performance. 

- 
- 
- 

- 

- - 

IDEAL (D ISCRETE)  SENSOR 

NIS (dB) 

Figure A-1 
MSE Performance Summary 

Figure A-2 
Fourth Moment Divided by Three Times the Squared Variance for the Phase-Locked Loop Error 
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Appendix B. Numerical Experiments With The Hermite Polynomial Expansion 

The objective of the numerical methods investigated in this research were 
to : 

1) devise methods to realistically (small computation time per estimate) 
solve the nonlinear filter problem using contemporary computers, and 

2) to  demonstrate that a practical nonlinear filter can be constructed 
to  take advantage of its inherent accuracy as compared to a linear filter. 
Both objectives were achieved using the methods of the previous sections and 
demonstrated with the programs given (Hecht [24]). 

The initial numerical data given is that generated at the University of 
Southern California, using an IBM 360-65 computer, and reported in [24]. 
The subsequent data was generated at Kirtland AFB, New Mexico, using a 
CDC 6600 computer and is reported here for the first time. 

The first goal, reduced computation time, was demonstrated by com- 
parison to  Bucy and Senne [14], where a two-dimension problem, roughly 

paper sophisticated techniques were used to reduce the number of computations 
per estimate, reducing the computation time by a factor of 200. The reduced 
number of computations, per estimate, was approximately 13 x 103. For 
the filter using Hermite expansions, described in this paper, the number of 
computations per estimate was 18 x IO2. However, the critical calculation, 
the evaluation of an exponential function, had to be done only 100 times 
per estimate. It would be indicated, therefore, that a time improvement of 
a factor of 130 could be expected. The Bucy and Senne paper gave results 
using a Burroughs B5500 computer, and had a measured time per estimate 
of 45 seconds. The Hermite numerical results, given in this chapter, were 
obtained using an IBM 360 Model 65 computer. For the Monte-Carlo exper- 
iments described in this Appendix there were 203 sample functions, each 
consisting of 130 points, which ran in 120 mn, or approximately 0.273 seconds 
per estimate. Assuming the Burroughs B5500 was approximately equivalent 
to the IBM 360-65, there was a measured improvement of 165 times. The 
measured time on the IBM 360-65 was just about what was predicted in the 
referenced paper for a parallel processing computer, if such a computer should 
become available at a future date. 

The second goal, simulation and demonstration of accuracy, was accom- 
plished by comparing the nonlinear filter, described in Section C ,  with the 
relinearized filter described in Section B. The Monte-Carlo results obtained 
were possible only because of the efficiency of the Hermite method. In the 
following descriptive material the filter of Section B is referred to as the 
" linear " filter, and that of Section C as the " nonlinear " filter. Both the 
linear and the nonlinear filters were designed to estimate the phase angle 
for the phase coherent communications problem. 

no FBvrier 1973 - J-1 

I equivalent to the phase-lock problem, was solved. In  the Bucy and Senne 



24 R. S. BUCY, C. HECHT ET K. D. SENNE 

As indicated in the discussion of Section B, the estimate of the phase 
angle is required modulo 2 x.  The construction of both filters was such as 
to  attempt to track the absolute phase angle. When evaluating the filters, 
however, the error, modulo 2 x ,  was the value used. 

The parameter, 

p l l  = E [ ( X l  - 21)2 1 z,, y = - 00, t l  

was the independent parameter for all comparisons. The variances of the 
message-model and the observation noise were related to p11 as was shown 
in Section B. Selections of the numerical values for the initial experiments is 
given in Table B-I. Viterbi [42] shows the parameter p ~ ( 0 )  is also the inverse 
of the effective signal to noise ratio, N / S .  Thus, p ~ ( 0 )  had the two physical 
interpretations : 

1) equilibrium error variance, 

3) effective noise to signal ratio. 

A preliminary test was made to  verify that both the linear and nonlinear 
filters were working properly. For small p11 one would expect both filters 
to give equal results. A sample function of 130 points (13 filter time constants) 
was generated for p1lliz = . I ,  .01, and .004; the computer listings were given 
in Hecht [23]. The following results were noted : 

1) The sequence of estimates for the linear and nonlinear filter agree 
with each other to about : 

10-2 radian for p1l1/2 = .1 

10-5  radian for pll'lz = .004 

c 

radian for plll'z = .01 

2) The measured variances and errors agree to within the same precision 

3) The equilibrium computed and measured variances for the two filters 
agree with each other and with the linear computed value using the equations 
of Section B. 

as the estimates. 

The nonlinear filter was tested atp:ll'/z = .55 ( j h l =  .3025, N / S  = - 5.2 dB) 
where the difference between the measured and theoretical linear variance 
was 3.5 dB. The nonlinear filter simulation test at N / S  = 5.2 was under the 
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same conditions as the linear filter, Le., same noise sequences, but only 200 
sample functions. The phase error variance for the nonlinear filter at these 
conditions was - 3.55 dB, or 1.45 dB better than the linear filter. This point 
is also shown in figure B-I. 

Table B-1 
Numerical Values Used for Computer Simulations 

Numerical Values Used for Computer Simulations 
A = time between samples, 
F = filter time constant, 
A 
F 
Pll(0) 
P22(0) 

= 0.1, - 

= equilibrium continuous linear position error variance, 
= equilibrium continuous linear velocity error variance, 

E(Xl(0))  = 0, 
E(xz(0)) = 0, 
E(x?(O)) = 4 Pll(O), 
E(xi(0)) = 4 P22(0), 

4 

gration = 10. 

= continuous message driving variance = 0.01. 
Number of points in each dimension for Gauss-Hermite numerical inte- 

Highest order of terms in series expansion of density function = 5. 

6L 5.2 DB=ASYMPTOTIC LIMIT // 
4- 

2-  

m 

z MEASURED VARIANCE 

LINEAR MODEL - 
CONTINUOUS 

LINEAR MODEL- 
IO SAMPLESITIME 

MEASiiRED KCINLINEAR VARIANCE 

W 
0 

> 

0 -  

v / I l l I  
-14 -12 -10 -8 -6 
I 
-4 -2 

- 1 
0 

I l l  

‘ 2  4 6 
L 
8 IO 

,j7R3’4Q”4= EFFECTIVE N/S IN DB 

Figure B-1 
Hermite Expansion Error Summary P(o) = 4 P(m) 

no FBvrier 1973 - J-1 



- ~~~ ~~ ~~ 

26 R. S. BUCY, C. HECHT ET K. D. SENNE 

-75 
I 
E .70- 
z 
5 -65- 
IT 
3 -60- 
-I 

- 

Figure B-2 
Cumulative Statistical Variance P(o) = 4 P(w) 

DISCRETE TIME - N  = t / A  
16 20 24 28 , 32 36 4.0 44 48 , 52 
I I 

2 3 4 5 
I 1 1 '  I I 1 I l l  

TIME IN FILTER TIME CONSTANTS' 
-2  - 

KALMAN FILTER 

-12- 

-18- 

-20 
-22- 

- 

Figure B-3 
Portion of Sample Function No. 6 Pll(o) = 0.3025 
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4 -  

EXTENDED KALMAN FILTER 

I DISCRETE TIME - N =  t/A 
I I 

2 3 4 5 
TIME IN FILTER TIME CONSTANTS 

Figure B-4 
Error for Sample Function No. 6 Pll(o) = 0.3025 

The cumulative average variance was plotted for both fi..ers to show 
the stabilization of the average as a function of number of sample functions, 
figure B-2. Points are plotted for every fifth sample function up until sample 
function number 100, then one final point at sample function number 200. 

Large errois for both the linear and nonlinear filters for the phase angle 
problem are due to  the phenomena of " cycle slippage, " which occurs more 
frequently as N / S  gets larger. The improvement in performance of the nonlinear 
filter was due, primarily, to the ability of the nonlinear filler to reduce the 
number of cycle slips. Sample function number 6 was identified as one in 
which the linear filter slipped several cycles whereas the nonlinear filter held 
on. The sequence of estimates and errors for both filters for this sample func- 
tion were analyzed and a portion of sample function number 6 (from about 
N = 15 to 52) is shown in Figure B-3 and the absolute value of the error, 
modulo 2 x,  is plotted in figure B-4. The figures show the linear filter has 
slipped a cycle at N = 35, and is slipping a second cycle at N = 50. The non- 
linear filter, at the same time, has a large error at N = 35 but appears to recover 
nicely and by N = 50 it is tracking very well. 

It can be seen that the measured variance in figure B-1 is significantly 
different than the corresponding curve given in Appendix A (fig. A-1). Inves- 
tigations showed that the initial conditions affected the variance for substan- 
tially longer than 3 time constants, as was originally assumed. The variances 
given in figure B-1 were based on the variance of the initial estimate being 
four times the equilibrium variance, whereas figure A-1 was based on the 
initial variance set equal to the equilibrium variance. 

no Fevrier 1973 - J-1 



28 R. S. BUCY, C. HECHT ET K. D. SENNE 

To demonstrate that the equilibrium solution could be achieved independent 
of the starting condition, one long sequence was run (83,000 points) starting 
at four times the equilibrium value. This is shown in figure B-5, where markers 
are inserted to show the result for the two curves previously mentioned for 
conditions given on the graph. After about 8,000 time constants (80,000 
points) the cumulative average appears to be approaching the solution given 
in figure A-1, which was based on 5,000 Monte Carlo sample functions of 
130 points each, starting at the equilibrium value. 

NUMBER O F  POINTS x io3 

30 4 0  50 60  70 8 0  
I I I I I 

Figure B-5 
Error Variance for Pll(o) = - 5.2 dB Starting at Pll(o) = 4 Pll(o0) 

With this new knowledge, the Hermite nonlinear filter was again evaluated 
with 400 Monte Carlo functions with the same parameters except that the 
starting values were the computed equilibrium values. This new sequence was 
compared to the phase-lock results for an identical set of sequences. The 
cumulative errors for the two filters are plotted in figure B-6, in a manner 
similar to figure B-2. Both the phase-lock and the nonlinear filter had smaller 
errors than before. The phase-lock for 400 functions was - 3.10 dB and 
the nonlinear filter was - 4.06 dB, for an improvement of 0.96 dB. Because 
of the larger number of samples the 3 CT confidence probability improved to  
about 0.07 for both filters. It was noted that the phase-lock error for 400 
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functions was 0.49 (- 3.10 dB) as compared to 0.50 (- 3.0 dB) for 5,000 
fubctions, or within .02 (.01/.49 = .0204) of what might be considered the 
" correct " error. 

3 0  
CONFIDENCE 
1 NTERVALS 

c 

- 2 5  - 
m n 

Lu V 

I 

-3.0 - 5 

2 u 
s 
5 -3.5 - z 
VI 

Y 
5 -40 -  
- 

J 
V 

I I 1 I 

100 I50 400 -4.56 50 

NO. OF SAMPLE FUNCTIONS 

Figure B-6 
Cumulative Statistical Variance for P11(0) = - 5.2 dB 

The above data was generated on the CDC 6600 computer, and it was 
noted the nonlinear filter (Hermite expansion) computed the estimates at a 
rate of .127 s/estimate, which was more than two times faster than the previous 
computer. 

In conclusion we note that a practical two-dimensional nonlinear filter 
was simulated using a digital computer. The digital filter error variance was 
within approximately 10 7; of the continuous model. Using Gauss-Hermite 
integration and Hermite Series expansions the nonlinear filter computed 
solutions to a phase angle problem at the measured rate of 0.273 s per estimate 
on a medium speed contemporary computer and .127 s per estimate on a high 
speed computer, which was 165 times faster than a roughly equivalent problem 
using the most advanced digital techniques prior to this paper. The phase 
angle problem solved was a model of an existing type of communications 
receiver which presently uses linearization methods to handle the nonlinea- 
rities. The simulated nonlinear filter using Hermite expansions showed an 
error variance reduction of .96 dB at moderately high noise to signal ratio, 
with greater reductions at higher noise levels shown for other nonlinear 
filter methods. (See the discussion in the following Appendices.) 
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Appendix C. Cyclic Point-Mass Experiments 

In this appendix we will discuss a point-mass realization of the cyclic 
phase density recursion. We will show how the cyclic representation of the 
problem is substantially better behaved for high-noise applications than the 
Hermite expansion, which suffers from multiple modes. We begin with a 
description of the special case of the cyclic point-mass filter. The density 
recursion satisfies the relation (see the main chapter). 

where 

I A 
[ ( Z I  - cos ~ 1 ) ~  + (ZZ - sin y#]  

I A 
(ZI cos y l  + zz sin VI) , 

and 
x x 

- x <y1 < x ,  - A  <y2 < A .  

The estimate which was simulated for the cyclic densities was the cyclic 

For large values of I v z  I in the summation : 

estimate described in the main chapter. 

the expression is negligibly small. 

Therefore, only those integers v z  were used where : 

Max F ( y z ,  q) > - 
2/s.'l 

The program that was developed makes the above test on F(  y2, q), and in 
all of the results to date only the value v z  = 0 has been found to be significant. 

F (  yz, q) is not a function of n, the integer time, and therefore was computed 
only one time in advance and stored for use in (C-1) for all n. A further simpli- 
fication was made by taking advantage of the fact that F ( y z ,  yl) is only a 
function of yz - u). That is, after discretizing the argument yz, F (  yz, q) is 
computed for a range of values of y2 - q, rather than for all combinations 
of yz and q. In the sequel we let the running variable u) be called x l  . 
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. 
and 

The 2-dimensional interval : 

I -  

x x _ -  A < X 2 < -  
A 

is divided into m and n equally spaced sub-intervals, respectively, and each 
sub-interval is defined by a point on its center, ylr ,  y2,, with i = 1, ..., m and 
j = 1, ..., n. The points ylt  and yz, define a grid which remains constant with 
respect to time, and the density function is represented by point masses defined 
only on this grid, where the magnitude of the point masses approximates 
the density at that point. From (C-1), the points .dj = yz, ( j  = 1,  n); that is, 
for each integer j, the two grid points are identical. 

I The integrand in (C-1) needs to be evaluated only for those xzj where 
Max F( y ~ i ,  X Z ~ )  > approximately For computing an updated density 

u2 -2' 

function I n  (i::) the integrand needs to be evaluated only a small number of 

times for each yz, (typically 10 times for n = 200). 

r 5  

The main difficulty in the mechanization of (C-1) is in determining 
ylr - x;? A , having the prior value of this function available only at a 

discrete set of in points in the first argument, different than those defined by 
jn-1( XZi ) 
y l ,  - X& A. 

One approach to solving this problem is as follows. Let : 

i =  1 , m  XI* = - x + 2 x - m 
(C-2) 

x2* * = - - x 2 x ( j - l )  + i ( y )  1 2z /A j = l , n  A + K Y  
as defined above. 

Now, 

5~ ~ T C  ( j -  1) - A  - -+- -  
[ A  A n 

no Wvrier 1973 - J-1 



32 R. S. BUCY, C. HECHT ET K. D. SENNE 

We want to use the integers i and j to define a new grid point k ,  on the xi 
axis; the k grid point must agree with an original xli grid point. That is, from 
(8) and (9) we want : 

or 
xllC = ~ l i  - A 

k - 1  1 2 x  i- 1 j -  1 
--x + 2 -x (y) - 2 (-;) = 2 x i(n) - (T)] 

1 1  
m n  + 7.c (- - -) (C-4) 

from which 
m 

k = i -  n - j + (X + m) 
In the initial approach to this problem, when k as computed from (C-5) 

was not an integer, the nearest integer value was selected. In order to assure 
an XI grid point falling exactly on XI = 0 m must be an odd integer. It is 
also desirable to have k be correct (an integer value from (C-5)) when the x; 
grid point j is in the center of its range, requiring n to be an odd number. 
To meet the above requirements, and to subdivide such that other points, k ,  

might match exactly with some i, the ratio ~- should be an odd integer, which 

also assures that no k point will fall exactly in the middle of two adjacent i 
points. 

A modification was made to the formula for computing k ,  to account for the 
possibility of k, as determined from (C-5), not falling in the range of (1, m). 

For 

n 
m 

k > m  k * = k - m  

k < l  k * = k + m  

Equation (C-6) is equivalent to folding back on the XI axis to remain 
within the interval [- x ,  x). 

The above technique works satisfactorily but requires a large number of 
grid points to stabilize on the “ true ” nonlinear estimate, necessitating substan- 
tial computer expense. To test for convergence, a fixed noise sequence was 
generated and the filter was used to estimate the state with the number of 
grid points progressively increased until increasing the number of points 
caused no change in the sequence of estimates. It was subsequently learned 
that the number of points needed for convergence varied as a function of the 
N / S  ratio. Substantial data was generated with the above method. Figure C-1 
shows the phase error variance as the upper of the two curves, based on Monte- 
Carlos of 200 independent sample paths of 100 steady state points. The 3 IJ 
confidence intervals represent 2,000 points (one each time constant). 
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An improvement which significantly reduced the computational require- 

density function at these places was evaluated by linear interpolation between 
the two adjacent integer values of k,  where the density function was available 
from the prior cycle. The interpolation was required only in the XI direction, 
since the densities in the x2 coordinate direction are computed at exactly the 
places where they are needed for the recursion formula. For interpolating 
between k = m and k = 1, the points m and 1 were considered adjacent, 
completing a circle. The convergence test described above was applied to the 
modified filter and stabilized for a substantially smaller number of grid points. 
The lower curve of figure C-1 was generated using the filter with interpolation. 

The two curves show the same filter error variance at about N / S  = 0 dB, 
which was in the vicinity of the N / S  ratio where the convergence tests were 
made prior to introducing the interpolation. For lower N / S  the interpolating 
filter shows lower errors, being about one dB, less at about N / S  = - 4 dB. 
The numerical granularity associated with non-interpolation apparently causes 
significant errors a t  the lower N / S  ratios, due to the sharpness of the phase 
error density function. At higher N / S  ratios, the filter error density is so 
diffuse that the numerical errors are of no consequence. 

* merits was to let k ,  from (1 l), take on non-integer values. The value of the 

200 CYCLIC POINT-MASS ~~ 

(NON-I NTERPOLATIVE) 
4 -  

3 -  5000 PHASE-LOCKED LOOP 

IDEAL (DISCRETE) LINEAR 

NIS (dB) 

Figure C-1 
Nonlinear Filter Summary (Enlarged) 

The numerical results of the Monte-Carlo experiments for the cyclic point- 
mass filter are given in Table C-1 . Table C-2 gives the associated improvement 
of the cyclic filter over the phase-locked loop results reported in Appendix A, 
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NIS 
(dB) 

- 4.01 
- 3.01 
- 1.79 
- 1.70 

0.00 

and Table C-3 gives the difference between the nonlinear filters and the ideal 
linear analysis. In all cases the minus and plus 3 0 confidence intervals are 
given, where for 2,000 points the lower threshold is - 0.394 dB below nominal 
and the upper threshold is 0.433 dB above the nominal. 

Non-Interpolative Interpolative 
MSE (dB) (Mod 2 x )  MSE (dB) (Mod 2 x )  

~~ 

Low 1 Nom. 1 High Low Nom. High , . . . . . . . . . . . . . . . . . . . .  ------- 
~ -2.20 - 1.81 ' - 1.38 - 3.22 -2.83 -2.40 

- 1.33 -0.94 -0.51 - 1.87 - 1.48 - 1.05 
- 0.09 0.30 0.73 
- - - - 0.38 0.01 0.44 
1.46 1.85 2.28 

- - - 
- - - 

T T  T 
2.4 - 
2.2 - 
2.0 - 

A ?M) CYCLIC POINT M A S S  
NON-INTERPOIATI VE 1.8 

U 

w 
- 
'0 .l Y m 1.4 . .  I*" -. -//{l-l\ - 1  T 

200 CYCLIC POINT M A S S  
I NTER POLATI VE 

0.8 

?M) CYCLIC POINT M A S S  
NON-INTERPOIATI VE 

A 1 . 8 -  
U - 

200 CYCLIC POINT M A S S  
I NTER POLATI VE 

1 
2 

NIS (dB) 

I '  
NIS (dB) 

Figure C-2 
MSE Improvement of Nonlinear Filters over Phase-Locked Loop 

Table C-1 
Monte Carlo-Mod 2x Error Performance Data for the Cyclic Point Mass Estimates 
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Low 

1.35 
1.47 

1.41 

-- 

- 

- 

Table C-2 
Monte-Carlo Improvements Cyclic Point-Mass over Phase-Locked Loop 

Nom. ~ High 

1.78 2.17 
1.90 2.29 

1.84 2.23 

--- ----_ 

- - 

- - 
I 

NIS 
(dB) 

- 4.01 
- 3.01 

*- 1.79 
**- 1.70 

0.00 

--- 
0.33 ~ 0.76 
0.93 1.36 
1.02 1 1.45 

0.75 1 1.18 
- - 

----- 
1.15 
1.75 
1.84 

1.57 
- 

NIS 
(dB) 

__---- 
- 4.01 
- 3.01 
- 1.79 
- 1.70 

0.00 

Table C-3 
Monte-Carlo Difference Between Cyclic Point-Mass and Ideal Linear 

MSE (dB) Difference 

-- 

MSE (dB) Difference 

Low I Nom. High Low Nom. High 

2.23 1 2.62 3.05 1.21 1.60 2.03 
2.10 I 2.49 2.92 1.56 1.95 2.38 
2.13 I 2.52 2.95 
- - - 1.75 2.14 2.57 

-__- ---- 

- - - 

1.9 1 2.29 1 2.72 - - I -  

1 I , I 

I I I I 

* Phase-Locked Performance read from graph (1.75 dB). 
** PhaseLocked Performance read from graph (1.85 dB). 

no Fevrier 1973 - J-1 



36 R. S. BUCY, C. HECHT ET K. D. SENNE 

w 

CL 
Y 

n 
Y 

5000 PHASE-LOCKEI 1 LOOP 

VPOlNTMASS 200 CYCLIC 
(INTERPOLATIVE) 

zoo CYCLIC POINT  MASS^ 
(NON-INTERPOLATI VE) 

200 FOURIER 

I I I I 8 I I I 

-5 -4 -3 -2 -I 0 I 2 

Figure C-3 
MSE Difference from Ideal Linear Analysis 

The summary of these data in figure C-1 is shown with the phase-locked 
loop performance and the Idealized Linear reference curve. Figure C-2 shows 
the improvements over the phase-locked loop and figure C-3 shows the differ- 
ence between nonlinear and ideal. In all figures the Hermite point from Appen- 
dix B is superimposed. 

In addition to determining the Monte-Carlo performance, a study was 
done to determine the execution times for various grid sizes in an effort to 
obtain a cost versus performance comparison. 

The results of figure C-1 were obtained with a grid of m = 21 and n = 105. 
The number p is evaluated by the program for each problem condition and 
represents the number of points on each side of the point ( x l i ,  x 4  in the xa 
direction, which contribue to the computation of the density of that point. 

An estimate of the time required to update the density function was based 
on the knowledge that the time was roughly proportional to  the number of 
computations. For each, m, n it requires m x n x p computations. The measur- 
ed data for the 21 x 105 grid case was about 0.215 seconds per estimate (as 
compared to the 5-coefficient Hermite value of 0.121 seconds per estimate). 
Using the above scaling, the data of Table C-4 was generated. 

To determine an adequate grid size many runs were made with the same 
random sequence inputs, using different grid size combinations. All runs 
were made with N / S  = - 1.7 dB, Filter Time constant = 5.13 seconds, 
samples per time constant = 10, q = .010 and r = 1.735. The sequence of 
estimates for a ten-increment time period (integer time = 3 1,40) were compared 
with each other. It was desired to find a combination which gave reasonably 
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31 x 155 
39 x 155 
51 x 155 

good results (as compared to larger grids) while minimizing the time per esti- 
mate. Table C-5 gives 3 sequences with the grid size progressively increasing 
while maintaining the ratio n/m = 5. Table C-6 maintains n = 155 while 
varying the ratio n/m from 3 through 5. Table C-7 maintains m = 31 while 
varying the ratio n/m from 5 through 7. Analyzing the absolute error sequences 
from Tables C-5 through C-7 we note that for n/m = 5,  and increasing grid 
size, the errors become smaller as the grid size increases, with very little change 
between m = 31 and n = 41, and insignificant differences between m = 21 
n = 41. For n = 155, Table C-6, and for m = 31, Table C-7, the same general 
trend was observed. That is, slight but insignificant improvement with increasing 
grid size. For Table C-7, especially, there appears to be no advantage in 
increasing m. Tables C-5 and C-6 suggest, however, that ultimate stabilization 
can be achieved by increasing m with n about 155. The choice of a 21 x 105 
grid for the Monte Carlo experiments was based on a compromise between 
time and accuracy, as illustrated in the Tables. 

6 5 .700 
6 4 375 
6 3 1.15 

Table C-4 
Timing Estimates 

I I J 

m = number of lines in x1 direction, 
n = number of lines in x2 direction, 

2 p + 1 = number of computations to update each grid point. 
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- 2.146 
- 1.905 
- 2.146 
-2.903 
-1.908 
- 1.246 
- 1.312 
- 1.894 
- 
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.098 

.315 

.064 

.682 

.314 

.951 

.850 

.301 

Table C-5 
n/m Constant 

~ ~- 

21 

3.105 
-3.077 
-2.232 
- 1.954 
-2.172 
-2.870 
- 1.920 
- 1.287 
- 1.343 
-1.871 

n - _  - 5  
m 

1 41 - x1 

.784 

.781 

.012 

.266 

.038 

.649 

.302 

.911 

.829 

.324 

Time 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

--- 

3.106 
-3.076 
-2.246 
- 1.960 
-2.177 
-2.867 
- 1.925 
- 1.290 
- 1.347 
- 1.870 

Time 
Est. 

_____ 
.783 
.780 
.002 
.260 
.033 
.646 
.297 
.908 
.825 
.323 

x1 

- 2.394 
- 2.296 
- 2.244 
- 2.220 
- 2 . 2 ~  

- 2.198 

- 2.221 
- 2.222 

- 2.162 
- 2.195 

n = 155 

Time 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

.700 sec. 
m = 31 
n - = 5  
m 

__ - . . 

f l  

3.100 
- 3.081 
- 2.216 
- 1.943 
-2.163 
- 2.880 
- 1.912 
- 1.274 
- 1.330 
- 1.866 

1 $1 - x1 

.789 

.785 

.028 

.277 

.047 

.659 

.310 

.924 
332 
.329 

.700 Sec. 
m = 31 
n = 155 

~~ 

_---_ 
I 

3.100l .789 
-3.081, .785 
-2.216 .028 
- 1.943 .277 
-2.163~ .047 

.659 I?:;;! .310 
- 1.274 .924 
- 1.330 .832 
- 1.866, .329 

Table C-6 
n Constant 

375 Sec. 
m = 39 
n 
- E 4  - 
m 

1.63 Sec. 
m = 41 
n = 205 

~~ ~ 

i 

-3.075 .779 
-2.234 .010 
- 1.955, -265 
-2.172 .038 
-2.868 .647 
-1.921, .301 
-1.2871 .911 

3.1061 .783 

- 1.343’ 319 
- 1.868 .327 

1.15 Sec. 
m = 51 

- _  3 
m -  

Revue Francaise d’dutomatique, Informatique et de Recherche op6rationnelle 



nt = 31 

Time 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
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.700 Sec. 
m = 155 
n - = 5 5  

41 

m 

41 - x1 1 
3.100 

- 3.081 
- 2.216 
- 1.943 
-2.163 
- 2.880 
- 1.912 
- 1.274 
- 1.330 
- 1.866 

.789 

.785 

.028 

.277 

.047 

.659 

.310 

.924 
332 
.329 

Table C-7 
m Constant 

1.17 Sec. 
m = 195 
n 
- -N 6 
m -  

21 

3.100 
- 3.081 
- 2.216 
- 1.943 
-2.163 
- 2.879 
- 1.912 
- 1.274 
- 1.330 
- 1.867 

21 - x1 I 
---- 

.789 

.785 

.028 

.277 

.047 

.658 

.310 

.924 
332 
.328 

1.46 Sec. 
m = 217 
n 
- E 7  
m -  

41 

3.101 
- 3.081 
- 2.212 
- 1.942 
- 2.162 
- 2.878 
- 1.912 
- 1.275 
- 1.331 
- 1.869 

.---- 
41 - x1 

.788 

.785 

.024 

.278 

.048 

.657 

.310 

.923 

.831 

.326 

Appendix D. A Fourier Series Experiments 

Mallinckrodt, Bucy, and Cheng [31] have observed the fact that since 
the cyclic phase density is periodic, a Fourier Series appears appropriate for 
representation of the density functions. They have developed equations for the 
evolution of the Fourier Series for the one dimensional problem. We extend 
their analysis to our two-dimensional problem and present the preliminary 
results of a numerical experiment in this appendix. 

We begin by observing that an arbitrary function J(J )  periodic on the 
x x 

rectangle - x < x1 < x, - - < x2 < - may be represented in terms of its A A 
two dmensional Fourier Series : 

where 
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Now the cyclic density obeys the recursion relation : 

where 

and 

A 

(D-4) 
ZI cos yl + zz  sin yl 

. S (  yl) = CO exp 

k 

Expressing M(u) as a Fourier Series yields 

where 

I U2 

= 1: exp 1 - 
1 "  

= 2 x I 2~ 
+ ivAu du 

exp [ - &] exp [- iu(- vA)] du 

= d 2 x q A  exp [ - 9?] 
Next, we represent S(y) by an infinite series by making the substitution 
z1 + izz = I z I exp (i0), so that z1 = 1 z I cos 0, and zz = I z 1 sin 0. Then 
S ( y )  is expressed as : 
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where IA is the modified Bessel function of imaginary argument of order A 
(see Abramowitz and Stegun [l], Equation 9.6.34). 

Finally, we combine the definition (D-2) with the expression (D-3), thereby 
obtaining : 

u;i = J'"? /In S ( y l )  [ s' M ( y 2  - xz) J n - 1  ('l --2x2A) dxz] 

(let T = y2 - X Z ,  or y2 = 7 + x2) 

M ( T )  e-llAT d-] 

-- 
A 4 

e - tw  e-i% dyl dyz 

x 

,, ~ 1 -  XZA 
S(y1) Jn-1  ( x2 ) 

--x 
A A 

e-lmy, e-t% dyl d x 2  

= [l"i 
(identify mr from (D-7)) 

(substitute (D-1) for jn-l  and (D-9) for S(y1))  

e-tmyl e-*% dyl dx2 

(rearrange using Fubini theorem) 

(D-10) 

From the definition (D-2) we observe that a;o = 1, since j n  must have unit 
total integral. But : 

4 x2 
ato = Co mo S-, a:;: = 1. (D-1 1) 

a 
Accordingly, we have 

4 x2 1 
- co = 

A mo S-, a:;-:' 
a 
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So, if we define fiv = m,/mo, we have finally that 

where 
qPA3 

f i t  = exp [- 1 1  , 

and 

S, = I ,  ~ exp { - i a 0  1. (Gl) 

(D-12) 

(D- 13) 

(D-14) 

Next, we observe that (from (D-2) : 

n 

u?l,o = IA, /In e+% J ,  (ci) dyl dyz = E [cos XI I Zn] + iE [sin XI I Z,].  
-- A (D-15) 

Therefore, the cyclic estimate (which minimizes E [2 (1 - cos e)]) is given by : 

&(n I n) = tan-1 { E [sin XI I Zn]/E [cos XI I Z,] } 
= tan-1 { Im (u_",,,)/Re ( u ? ~ , ~ )  } (D-16) 

Using the equations (D-12) - (D-14) and (D-16) we have implemented 
an example of the Fourier Series filter with - 5 < m < 5 and - 5 < 1 < 5 
for a total of 1 1  x 11 = 121 coefficients. Due to the occurrences of negative 
mass we discovered that Fourier Series is not suitable for low-noise situations. 
On the other hand, for N / S  = 1 dB and q = 0.1 we managed to get quite 
good results. This may be in figure C-1, where the result of the mean-modulo- 
2 x-squared error of the Fourier Series is shown in conjunction with the 
experimental results for the phase-locked loop (Appendix A), the Hermite 
Expansion (Appendix B), and the point-mass representation (Appendix C). 
The nominal Monte Carlo result for the Fourier Series at N / S  = 1 dB was 
2.65 dB with a 200 Monte-Carlo 3 Q confidence from 2.26 dB to 3.08 dB. 
This result is equivalent to a nominal improvement over the phase-locked 
loop of 0.84 dB with 3 Q confidence from 0.41 dB to 1.23 dB. Also, the differ- 
ence between Fourier Series performance and the ideal linear was nominally 
2.12 dB with confidence interval from 1.73 dB to 2.55 dB. 

Although the above Monte-Carlo result was consistent with the previous 
experiments it represents a preliminary result, since we still have not completely 
isolated a solution to the negative mass dilemma. More results will follow in 
a later paper. 
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* Appendix E. A Movie of Conditional Densities 

Just as we have demonstrated the value of visual inspection of conditional 
densities for the tracking problem in the past see [14], we now illustrate the 
wealth of information contained in the conditional densities for the phase 
demodulator. In this appendix, we describe a movie made of cyclic phase 
densities using the point-mass method described in Appendix C. 

The parameters used for the sequence in the movie were as follows : 

N/S = 0 dB, = 0.1 
A = 0.24 

The initial density was chosen with the nominal steady-state value 
PII = 1.85 dB (1.53), and the grid size was set at 31 points in phase by 155 
points in phase-rate. The isometric views of the densities, seen in figure E-I, 
are shown for phase over the entire interval [- x,  x], but phase rate is shown 

over only one third of the interval - - . Thus spillover in the phase rate 

direction is not lost, but merely not shown. In the initial sequence from the 
movie [I l l ,  shown in figure E-1, many features may be observed. Cycle slips 
in phase are accompanied by general turbulence of the density, the appearance 
of multiple modes and other anomalies. One explanation for the appearance 
of multiple modes and thus the cycle slips is the occasional major disagreement 
between the in-line and quadrature measurement components ZI and 22, as a 
result of the independent noises V I  and v2. The sequence shown in the figure 
illustrates, though, how recovery is gradually reaccomplished when the measu- 
rements agree. 

The following 18 pages constitute figure E-1. The densities are taken from 
the initial condition and 59 conditional a posteriori densities. 

[ XI 
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Figure El (A h 0) 
A Typical Sample Path ofDensities Evolving in Time 
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RATE 

29 
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CONCLUSION 

We have shown how it is possible to design and build an optimal phase 
demodulation system which achieves considerable mean-square error perform- 
ance improvement over the filter from the classical phase-locked loop. In 
order to  build and evaluate this optimal filter, we have employed a CDC 6600 
computer. Of course, only the most important problems would merit the alloca- 
tion and dedication of such an expensive tool to phase tracking. We would 
envision the development of a special purpose computer exploiting the innate 
parallelism of the Bayes rule calculation, necessary to find the requisite condi- 
tional density, to realize the optimal filter. In fact in [13] and [34] we demons- 
trated the speed and effectiveness of such a device, based on a hybrid computer. 
Abstractly, Bayes’ rule may be written as : 

and 

with * denoting spatial convolution and - denoting pointwise multiplication. 
Rewriting the equations in this form, suggests that the convolution equation 
could be realized by a fast Fourier Transform hardware box, in conjunction 
with a mini-computer to close the loop. The computational burden is the 
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convolution equation, and for the two-dimensional problem we are inves- 
tigating optical systems to realize the convolution. High speed corollators have 
been built with bandwidths exceeding 500 MHz, and by coding space into 
time these corollators may be used to realize the spatial convolution. These are 
but a few of the possible ways to reduce the current high cost per estimate 
which results from using a general-purpose digital computer as a synthesis 
tool. It is clear that the computational problem which is involved in realizing 
an optimal nonlinear filter is the same as that posed by the numerical solution 
of partial differential equations, and as such is important for this reason 
alone. 

We are optimistic though, that in five years real systems will be built 
which depend on numerical solutions to the nonlinear filtering problem, 
and that perhaps eventually such realizations will become as common place 
as the current application of extended Kalman-Bucy filters. 
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